

Magnet

Magnet is an energetic and intriguing sans-serif family, designed by Inga Plönnigs. Its family structure is unconventional, offering an extra compressed Headline and a workhorse Standard under the same name — effectively two families combined.

Magnet Headline creates a dazzling pattern of tightly packed shapes, which is amplified further in the Slanted and Backslanted styles. Magnet Standard is the quieter sibling, which carries its own flair with deeply cut notches and unusual turns of weight. Its boxy curves take well to dense settings and tight line spacing. Through years of experimenting with rigid patterns and organic details, Plönnigs has created a family that is both surprising and reliable. DESIGNED BY INGA PLÖNNIGS

CONTRIBUTIONS BY NINA STÖSSINGER

MAGNET IS A TRADEMARK OF INGA PLÖNNIGS AND MAY BE REGISTERED IN CERTAIN JURISDICTIONS. © 2021 INGA PLÖNNIGS ALL FRERE-JONES TYPE FONTS ARE AVAILABLE ONLINE FOR PRINT, WEB, AND MOBILE APPS; OTHER LICENSES ARE AVAILABLE UPON REQUEST.

THIS PDF IS FORMATTED FOR PRINTING ON US LETTER AND A4 PAPER SIZES WITHOUT SCALING.

SPECIMEN VERSION 1.0

FAMILY OVERVIEW

HEADLINE				
BACKSLANTED	UPRIGHT		SLANTED	
Magnet	Magnet		Magnet	
STANDARD				
LIGHT		LIGHT ITAL	IC	
Magnet		Mag	net	
REGULAR		ITALIC		
Magnet		Mag	net	
MEDIUM		MEDIUM IT	ALIC	
Magnet		Mag	net	
BOLD		BOLD ITALI	с	
Magnet		Mag	net	
BLACK		BLACK ITAL	.ic	
Magnet		Mag	net	

Conservational **Nutual Attractions** Newton's Laws of Motion Helps the Earth to Keep its Orbit

Momentum Conservational **Mutual Attractions** Newton's Laws of Motion Helps the Earth to Keep its Orbit

UU CIRRENT STRENGTH UCK BN A SUDDEN CURIUSI N BACKSLANTED

FRERE JONES

HVPOTHESIS **DIDDING NEEDLE** CURRENT STRFNGTH **DOCTRINE OF ATTRACTIO** STRUCK BY A SUDDEN CURIOSITY

ERERE IONES

Radius Mollusk Expansion Interference **Fraunhofer Lines** Mechanical Advantage Sun Spots and Magnetic Storms LIGHT

States Current Detectors Evaporation **Matter and Form** Unrest of the Universe **Condensation of Electrification** REGULAR

Media Friction Resultant Condensing **Surface Tension** Material of the Metals The Occurrence of Iron in Spain MEDIUM

Bacon Radium Magnetic Convection **Hertzian Waves** Induction of the Earth Prescribe Loadstone in Plaster

BOLD

Solids London Spherical Permanent **Single Fluid Cell Magnetic Earth Poles Telephones Through the Earth** BLACK

Chime Newton Standpipe Instruments Field of a Magnet Crucibles and Methods How Small Pieces of Iron Behave LIGHT ITALIC

Cutlas Sanitize Enigmatic Interrupters Magnetic Needle Possessed by the Earth Electromagnetic Theory of Light ITALIC

Nodes Science Prismatic Incontinent **Small Apertures Convective Discharge** Moisture Stops Electric Action MEDIUM ITALIC

Strata Planets Induction Equilibrium **Noise and Music Hardening Properties Absolute Scale of Temperature** BOLD ITALIC

Static Motion Overshot Gravitation Nomenclatures **External and Internal** Flame Destroys Electrification BLACK ITALIC

CIRCUITS REPULSION POWER FACTOR WINDINSTRUMENTS DIAMOND ATTRACTING IRON LIGHT

SIMPI **COLING** DEDUCIBLE PRIMARY FORM **MAGNETIC HORIZON BEGINS AND ENDS IN MATTER** REGULAR

GERM **OWER** 85 VOLTS ELEVATION **POWER-HOUSE INDUCED CURRENTS** THEOPHRASTUS AND AMBER MEDIUM

SIRF IVERS INDUCE SHIELDING **CATHODE RAYS** SCOFFING DEFIANCE INDUCING ELECTRIC ACTION BOLD

FRERE JONES

CURTIUS RECEIVING NTERFERENCE **MAGNETIC EFFECTS PERPETUAL MOTION ENGINE** BLACK

FRERE JONES

SABIN RADIUS DIAGRAM IIGHTNING CANDLEPOWER DIFFUSION OF GASES MAGNET THAT DRAWS SILVER LIGHT ITALIC

PARIS HERON ENSUING MAGNETIC **CATHODE RAYS** SIMPLE RESISTANCE QUALITY OF MUSICAL TONES MEDIUM ITALIC

FREKE

GROG HOUSE CUSTOЛ ORIBASIUS VAPORIZATION **PASCAL'S PRINCIPLE** SIGNALING BY ETHER WAVES BOLD ITALIC

Complaisance and Readiness Derhaps Another Reason Why Recklanted

Diffidence Overwhelmed Him Convince by Coaxing, Flattery

Remarkable and Striking Fact Concentrated and Intensified

SLANTED

ORIGIN OF THE COMPASS-CARD THF PROPERTY OF ATTRACTION UPRIGHT

MUSICAL TOMES TRANSMITTED BACKSLANTED

FRERE JONES

Grouped and Combined Indeterminacy Principle

Underlying Assumption Certain, Swift, and Final

Liberal Contemplations Method of Determining

Crucibles and Methods Tangent Galvanometer

The Navigators Supply Brownian Movements

BLACK

Graphic Representation Rest, Respite, and Peace

The Quick Pulse of Gain Neatness and Propriety

MEDIUM ITALIC

Treasured Possessions Constructs Voltaic Pile BOLD ITALIC

Terrestrial Magnetism Interposition of Bodies

PRINTING TELEGRAPH DIAMAGNETIC BODIES LIGHT

INCANDESCENT LAMP NICOLAUS MYREPSUS REGULAR

GALVANIC BATTERIES FIRST SPECIFICATION MEDIUM

ELECTRIC LEMONADE **KANGAROO BURGERS**

BOLD

CENTRIFUGAL FORCE EFFECT OF BREAKING

BLACK

TYPICAL EXCELLENCE EXTENSIVE LEARNING

BINDING OBLIGATION LIKE A THING AT REST

CHERISH AND GUARD OPULENCE OF DETAIL

BOLD ITALIC

SAUSAGE SCRAMBLE OYSTER MUSHROOM

BLACK ITALIC

FRERE

HEADLINE SLANTED 63 PT / 56 PT

Lodestone, a natural magnet, attracting iron nails discovered by ancient humans

LIGHT AND LIGHT ITALIC 13 PT / 17 PT

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life,

LIGHT AND LIGHT ITALIC 9 PT / 13 PT

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life, these substances are often described as non-magnetic.

The magnetic state (or magnetic phase) of a material depends on temperature, pressure, and the applied magnetic field. A material may exhibit more than one form of magnetism as these variables change. The strength of a magnetic field almost always decreases with distance, *though the exact mathematical relationship between strength and distance varies.* Different configurations of magnetic moments and electric currents can result in complicated magnetic fields.

Only magnetic dipoles have been observed, although some theories predict the existence of magnetic monopoles. Magnetism was first discovered in the ancient world, when people noticed that lodestones, naturally magnetized pieces of the mineral magnetite, could attract iron. In ancient Greece, Aristotle attributed the first of what could be called a scientific discussion of magnetism to the philosopher Thales of Miletus, who lived from about 625 BC to about 545 BC. The

HEADLINE UPRIGHT 63 PT / 56 PT

Geologists often use a standard Brunton Geo compass, which will align itself with

REGULAR AND ITALIC 13 PT / 17 PT

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility.Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments,

REGULAR AND ITALIC 9 PT / 13 PT

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses. have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life, these substances are often described as non-magnetic.

The magnetic state (or magnetic phase) of a material depends on temperature, pressure, and the applied magnetic field. A material may exhibit more than one form of magnetism as these variables change. The strength of a magnetic field almost always decreases with distance, *though the exact mathematical relationship between strength and distance varies.* Different configurations of magnetic moments and electric currents can result in complicated magnetic fields.

Only magnetic dipoles have been observed, although some theories predict the existence of magnetic monopoles. Magnetism was first discovered in the ancient world, when people noticed that lodestones, naturally magnetized pieces of the mineral magnetite, could attract iron. In ancient Greece, Aristotle attributed the first of what could be called a scientific discussion of magnetism to the philosopher Thales of Miletus, who lived from about 625 BC to about 545 BC. The ancient

A magnetic field is often detected with a compass and iron filings which, once

MEDIUM AND MEDIUM ITALIC 13 PT / 17 PT

HEADLINE BACKSLANTED 63 PT / 56 PT

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility.Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory

MEDIUM AND MEDIUM ITALIC 9 PT / 13 PT

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life. but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life, these substances are often described as non-magnetic.

The magnetic state (or magnetic phase) of a material depends on temperature, pressure, and the applied magnetic field. A material may exhibit more than one form of magnetism as these variables change. The strength of a magnetic field almost always decreases with distance, *though the exact mathematical relationship between strength and distance varies.* Different configurations of magnetic moments and electric currents can result in complicated magnetic fields.

Only magnetic dipoles have been observed, although some theories predict the existence of magnetic monopoles. Magnetism was first discovered in the ancient world, when people noticed that lodestones, naturally magnetized pieces of the mineral magnetite, could attract iron. In ancient Greece, Aristotle attributed the first of what could be called a scientific discussion of magnetism to the philosopher Thales of Miletus, who lived from about 625 BC to about 545 BC.

HEADLINE UPRIGHT 63 PT / 56 PT

The magnetic field of the Earth aligns the domains, leaving the iron a weak magnet

BOLD AND BOLD ITALIC 13 PT / 17 PT

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility.Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected

BOLD AND BOLD ITALIC 9 PT / 13 PT

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life, these substances are often described as non-magnetic.

The magnetic state (or magnetic phase) of a material depends on temperature, pressure, and the applied magnetic field. A material may exhibit more than one form of magnetism as these variables change. The strength of a magnetic field almost always decreases with distance, *though the exact mathematical relationship between strength and distance varies.* Different configurations of magnetic moments and electric currents can result in complicated magnetic fields.

Only magnetic dipoles have been observed, although some theories predict the existence of magnetic monopoles. Magnetism was first discovered in the ancient world, when people noticed that lodestones, naturally magnetized pieces of the mineral magnetite, could attract iron. In ancient Greece, Aristotle attributed the first of what could be called a scientific discussion of magnetism to the philosopher Thales of Miletus, who lived from about 625 BC to

HEADLINE SLANTED 63 PT / 56 PT

Ferromagnetism is demonstrated by the tip of a permanent magnet with coins

BLACK AND BLACK ITALIC 13 PT / 17 PT

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility.Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected

BLACK AND BLACK ITALIC 9 PT / 13 PT

All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility.Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life, these substances are often described as non-magnetic.

The magnetic state (or magnetic phase) of a material depends on temperature, pressure, and the applied magnetic field. A material may exhibit more than one form of magnetism as these variables change. The strength of a magnetic field almost always decreases with distance, though the exact mathematical relationship between strength and distance varies. Different configurations of magnetic moments and electric currents can result in complicated magnetic fields.

Only magnetic dipoles have been observed, although some theories predict the existence of magnetic monopoles. Magnetism was first discovered in the ancient world, when people noticed that lodestones, naturally magnetized pieces of the mineral magnetite, could attract iron. In ancient Greece, Aristotle attributed the first of what could be called a scientific discussion of

HEADLINE PUNCTUATION AND ACCENTS

DEFAULT PUNCTUATION AND ACCENTS 55 PT / 55 PT

THIN PUNCTUATION AND ACCENTS 55 PT / 55 PT

Nuclear magnetic resonance (NMR) has en Odpowiedzialny za większość magnetyczn Nam châm, được làm theo hình móng ngựa Magnetické pole je fyzikálne pole, v ktorom Járnsvarf raðast upp samsíða segulsviðslír

Nuclear magnetic resonance (NMR) has eno Odpowiedzialny za większość magnetyczn Nam châm, được làm theo hình móng ngựa, Magnetické pole je fyzikálne pole, v ktorom Járnsvarf raðast upp samsíða segulsviðslír

HEADLINE SIZE RANGE

MAGNET HEADLINE UPRIGHT 16 PT AND UP IN PRINT & 48 PX AND UP ON SCREEN

The magnetic compass is the most fam compass type. It functions as a pointer

- The magnetic compass is the most familiar compas functions as a pointer to "magnetic north", the local
- The magnetic compass is the most familiar compass type. It fun pointer to "magnetic north", the local magnetic meridian, becau
- The magnetic compass is the most familiar compass type. It functions as a poin north", the local magnetic meridian, because the magnetized needle at its heart
- The magnetic compass is the most familiar compass type. It functions as a pointer to "magnetic no magnetic meridian, because the magnetized needle at its heart aligns itself with the horizontal con
- The magnetic compass is the most familiar compass type. It functions as a pointer to "magnetic north", the local magnetic magnetized needle at its heart aligns itself with the horizontal component of the Earth's magnetic field. The magnetic field
- The magnetic compass is the most familiar compass type. It functions as a pointer to "magnetic north", the local magnetic meridian, beca its heart aligns itself with the horizontal component of the Earth's magnetic field. The magnetic field exerts a torque on the needle, pulling
- 14 PT The magnetic compass is the most familiar compass type. It functions as a pointer to "magnetic north", the local magnetic meridian, because the magnetizer the horizontal component of the Earth's magnetic field. The magnetic field exerts a torque on the needle, pulling the North end or pole of the needle approximation of the Earth's magnetic field.

¹² PT The magnetic compass is the most familiar compass type. It functions as a pointer to "magnetic north", the local magnetic meridian, because the magnetized needle at its heart aligns its Earth's magnetic field. The magnetic field exerts a torque on the needle, pulling the North end or pole of the needle approximately toward the Earth's North magnetic pole, and pulling the

STANDARD SIZE RANGE

MAGNET LIGHT

8 PT AND UP IN PRINT & 16 PX AND UP ON SCREEN

- As a consequence of Einstein's theory of special relatives and magnetism are fundamentally interlinked. Both m lacking electricity, and electricity without magnetism, inconsistent with special relativity, due to such effects
- As a consequence of Einstein's theory of special relativity, elect magnetism are fundamentally interlinked. Both magnetism lack and electricity without magnetism, are inconsistent with special such effects as length contraction, time dilation, and the fact th
- As a consequence of Einstein's theory of special relativity, electricity and mag fundamentally interlinked. Both magnetism lacking electricity, and electricity are inconsistent with special relativity, due to such effects as length contract the fact that the magnetic force is velocity-dependent. However, when both
- As a consequence of Einstein's theory of special relativity, electricity and magnetism are fundamental magnetism lacking electricity, and electricity without magnetism, are inconsistent with special relativi length contraction, time dilation, and the fact that the magnetic force is velocity-dependent. However, magnetism are taken into account, the resulting theory (electromagnetism) is fully consistent with sp
- As a consequence of Einstein's theory of special relativity, electricity and magnetism are fundamental magnetism lacking electricity, and electricity without magnetism, are inconsistent with special relativ length contraction, time dilation, and the fact that the magnetic force is velocity-dependent. However, magnetism are taken into account, the resulting theory (electromagnetism) is fully consistent with sp
- As a consequence of Einstein's theory of special relativity, electricity and magnetism are fundamentally interlinked electricity, and electricity without magnetism, are inconsistent with special relativity, due to such effects as length the fact that the magnetic force is velocity-dependent. However, when both electricity and magnetism are taken in (electromagnetism) is fully consistent with special relativity. In particular, a phenomenon that appears purely elect
- 7 PT As a consequence of Einstein's theory of special relativity, electricity and magnetism are fundamentally interlinked. Both magnetism without magnetism, are inconsistent with special relativity, due to such effects as length contraction, time dilation, and the fact the dependent. However, when both electricity and magnetism are taken into account, the resulting theory (electromagnetism) is fully particular, a phenomenon that appears purely electric or purely magnetic to one observer may be a mix of both to another, or more
- 6.5 PT As a consequence of Einstein's theory of special relativity, electricity and magnetism are fundamentally interlinked. Both magnetism lacking magnetism, are inconsistent with special relativity, due to such effects as length contraction, time dilation, and the fact that the magnetic for both electricity and magnetism are taken into account, the resulting theory (electromagnetism) is fully consistent with special relativity. In paper of the purely electric or purely magnetic to one observer may be a mix of both to another, or more generally the relative contributions of electricity and magnetic to one observer may be a mix of both to another.
- 6 PT As a consequence of Einstein's theory of special relativity, electricity and magnetism are fundamentally interlinked. Both magnetism lacking electricity, a inconsistent with special relativity, due to such effects as length contraction, time dilation, and the fact that the magnetic force is velocity-dependent. Ho are taken into account, the resulting theory (electromagnetism) is fully consistent with special relativity, a phenomenon that appears purely may be a mix of both to another, or more generally the relative contributions of electricity and magnetism are dependent on the frame of reference. Thus,

ANGUAGE SUPPORT

MAGNET SUPPORTS OVER 200 LANGUAGES. MORE INFORMATION AT FREREJONES.COM/FAO

HEADLINE UPRIGHT 28 PT / 35 PT

AFRIKAANS	Daar is geen hoë berge nie,
ALBANIAN	Çdo grup përmban element
APACHE	Goshtľish ndé k′éháťégo na
ASTURIAN	La enerxía xenerada emítes
AZERBAIJANI	Təbiidir ki, xalqımızın məişə
BASOUE	Gizon-emakume guztiak as
ROSNIAN	Nailakši hemiiski elementi
BOSINIAN	Dezhi da dermenañ e wirioù
BRETON	llna imatde haldament nål
CATALAN	Τοτά ηπας ο, σαια αποτερα Τοτά η ο ό το ό ό η λατε ό η ο ό ο ο
CHEYENNE	Duh dan all viji danve rudh l
CORNISH	Pub uch on yw genys ryun i Diolomični nonie cunčovih
CROATIAN	Vito nomocí tăch vodičoly r
CZECH	Nico, poinour locit vouicer i Åhninden ud med det durid
DANISH	ADIIIIYUI UU IIUU UUL DVI Y
DUTCH	UCCII DEDAIIII III UCLE VEI KI

want hoog is daar die wêreld self; en luggies wa tet të cilët kanë të njëjtin konfigurim elektronik aaki 'ájílaaná'a. Haodzígo 'ájílaaná'a dík'eh. 'Ákoo se al espaciu en forma de radiación elleutromag ət xüsusiyyətləri, estetik zövgü, bir sözlə milli si ske jaiotzen dira, duintasun eta eskubide berber , među kojima su vodik, helij i manje količine liti ù ha dleadoù hag an tamalloù graet dezhañ. Pep ·lida, del paradís terrenal. En Quiquet, per cortes *v*é'öhtsémóho, heva hó'taévähéhotse'oestse hó'(hag kehaval yn dynita ha gwiryow. Yth yns i ken sustava uključuje prostor za grijanje i hlađenje mohl dělat, co chtěl. Mohl třeba dostat medúzu (e hav kaldes for fjordens munding. En fjord er ke laring zal zodanig mogen worden uitgelegd, dat

ENGLISH ESPERANTO ESTONIAN FAROESE FINNISH FRENCH GALICIAN GERMAN GIKUYU GREENLANDIC GUARANÍ HAWAIIAN HUNGARIAN IGBO INDONESIAN

This well done would greatly facilitate the labors of those whose duty it is Ĉiuj liaj vivbezonaĵoj portis la nomon drako kaj estis ornamitaj per diversaj Ahjus hõõgub tuli ja punetab säält seinte pääle. Ahju ees sawik, kolde koha Trældómur av øllum slag skulu verða bannað. Somuleiðis skal eingin misn Pyhä paistoi pyrstötähti, taivas kummasti helotti, kupu taivahan kumotti, Elle se plut dans la société des sœurs, qui, pour l'amuser, la conduisaient da Sen distinción ningunha de raza, cor, sexo, idioma, relixión, opinión política Gleich den süßen Frühlingsmorgen, die ich mit ganzem Herzen genieße. Ich Ndingĩrĩ na thimũ nongũhũrĩre. Nako kagui gakĩambĩrĩria gũthambĩra. Kora Aappariilernissap tungaatigut, aappariinnerup nalaani aammalu aappariig Maypa tapicha iderecho oguerekóvo ijidea ha iñeñandu tee, ha upéva oiku Eia ho'i, 'a'ole e ho'okae 'ia ke kanaka ma muli o ke kūlana politika a me ke ku Budát és a budai polgárokat egy darab idő óta valóságos divat kigúnyolni. Stálbikið borið á með suðunni og sje vel þurrt undir. Það er ætlazt til, að þei Q dighi onye a ga-akwagide na nnyonye anya ezighi ezi n'ihe o-coghi ka oha Air hutan ini tidak sepanjang tahun mengalir deras, ada kalanya berkurang Fairis sin, ní déanfar aon idirdhealú ar fhoras no céimíochta poiliticiúla, dlí

Nessuna paura è più stupida di quella che ci fa temere di uscire dall'arte che ITALIAN Ing Jawa gamelan biyasané kanggo musik pangiring pagelaran wayang ku JAVANESE Kurdî, zimanekî wisa ye ku ji pêş, paş û navê ve qertafan digire. Ev qertafên KURDISH Et accedentes locuti sunt regi super edicto: Rex numquid non constituisti, IATIN Baltā cielava ir Latvijas nacionālais putns. Latvijā sastopama ļoti bieži no a LATVIAN Jokia šios Deklaracijos nuostata negali būti aiškinama kaip suteikianti kur LITHUANIAN Órè dúó apá ánaa enávyólo naá órè taá, órè taá náají, órè dúó énaa enapáká MAASAI Sadajana oreng e lahiragi sareng hak-hak se dha-padha, mutlak klaban kab MADURESE Ny tondron'ny abidin'i Radama dia mitovy endrika amin'ny abidy ampiasair MALAGASY Fl-istess hin, uhud mill-isbah poeżiji tieghu juru vjagg interjuri fl-esperjenz MAITESE Bii, na luntanolu le soto. I bota mintoo le? I bota Basse le. Jan nin Basse mu MANDINKA Kāhore anō ngā kūmara me ērā atu kai pērā kia kohia noatia. I te wā o Mata MĀORI Naadáá' k'éédíshdléehgo shił vá'át'ééh. Shidah na'at'a'í kwii nighan shiłní na NAVAJO Klær, bolig og helseomsorg og nødvendige sosiale ytelser, og rett til tryggh NORWEGIAN Tan m'abelís vòstra cortesa demanda, que ieu non pòdi ni vòli m'amagar de OCCITAN Jeżeli panowie przyjrzycie mu się dokładnie, to zmiarkujecie, że piszący mi POLISH Se o milagre prova a divindade, então é divino o peixe Oannes, que tem bar PORTUGUESE

Lliwmanta aswan pisgukunaga phawayta atiptin, hukkunatag manam ati OUECHUA Asta deoarece unitățile fundamentale trebuie să poată permite măsurarea ROMANIAN Bain svelt è'la gnüda confruntada in butia cul rumantsch. Per ella esa stat (ROMANSH li oktage galgga dubmejuvvot ránggáštussii dakkár dagu dahje šláibmahu SAMI 'Ua o latou sa'ili'ili pea i 'auala ma mea e fa'aalualu ai ma fa'afaigōfie ai le ola SAMOAN Dalje, neće se praviti nikakva razlika na osnovu političkog, pravnog ili med SERBIAN Pri niektorých ďalších to však nefunguje – najprirodzenejší je v tomto vita SLOVAK To je dejansko lahko zaželeno, saj zabrisani krogi, ki so ob robu temnejši, tv SLOVENIAN Inclinóse el padre y besó a la niña dormida, que sonrió al sentirse besada e SPANISH Kuna wakati, Abunuwasi aliamua kuwa mfuga mbuzi. Alinunua mbuzi wa l S/A/A HILI Åter igen ville han tala. Men det han ville säga var alltför mycket, alltför lån SWEDISH Guinawâ ang anyaya sa paghapong itó sa isáng bahay sa daang Anloague, A TAGALOG Kgotla e kaiwa mo setsong sa Setswana jaaka lefelo la botlhokwatlhokwa İmambayıldı, ana malzemesi patlıcan olan, soğan ve sarımsak kullanılarak TURKISH Olukolela okuti vukanda owiñgi wofokeka vyalikongela, wasapula onjanja UMBUNDU Thành phần chính của phở là bánh phở và nước dùng cùng với thịt bò hoặc VIETNAMESE Y mae'n lân, er nad oes adeiladau mawrion yn ei rhan hynaf. Hawdd gweled WELSH

HEADLINE CHARACTER SET

UPPERCASE LETTERS AND THIN ALTERNATES ABCDEFGHIJKLMNOPQRSTUVWXYZ ÁÀÂÂÂÂÂÂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂ ÆĐĆĈČĊÇĎDDDĐÉÈÊÊÊÊÊÊÊÊÊÊÊ EĘĘĜĞĞĞĞĞĤHHHHÎÎÎĬĬĨĨĬĬÎIJ ĶĹĽĻĻĻĻĻĹ ĹŃŴŅŃŇŇŇŅŅŅŊÓŐŎ ÔÔŐÔŐŐŎŎÕŌÖĊOţOţŒŒŎŎÕŎŎ ŔŘŔŖŖŖŚŜŠŞŞŞBŤŢŢŢŢŢÚŰÙÛ ŬŬŨŪŰŮŮŮŮŲŲƯŰÙŨŮŲVŴŴ

abcdefghijklmnopqrstuvwxyz áàâậãããããăăăăăăăããāääâââaaâ¢ çdddddéèêệéëëëëëëëëëëëeeeeeggggggg gĥḫḥḥḥħıîîĭĭīïiîijjjjkkkkĺľJJIĪIłmmm ńħňñṁŋŋŋŋŋóőòôôôôôôôôōöööö odœodôôôddrířŕřŗŗŗsŝšşşşßťţţţţţţtúű ùûŭŭũūüüüüüüûûûuuuưưừữửựvŵŵŵ wxýyŷŷyÿyyy*źźźż*zzŽðþə

ERCASE LETTERS AND THIN ALTERNATES

ABCDEFGHIJKLMNOPQRSTUVWXYZ AAAAAAAAAAAAAAAAAAAAAAA ÆBCCČCÇDDDDDEEEEEEEEE EEEGĞĞĞĞĞĞĤHHHHIIIIIIIIIII KKLLLLLLMMMMNNNNNNNNNN ÓÖ OOOOOOOOOOOOOOOEOOOO KRRRRSSSSSBTTTTTTTŰÜÜ ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ

abcdefghijklmnopqrstuvwxyz

× • - • • · · · · · · ·

OLDSTYLE FIGURES AND THIN ALTERNATES	1
SUPERSCRIPT & SUBSCRIPT AND THIN ALTERNATES	A ¹ B ₁ C
NUMERATORS, DENOMINATORS AND THIN ALTERNATES	¹ / ₁
PRECOMPOSED FRACTIONS AND THIN ALTERNATES 1 1 2 1 3 1 2 1 2 3 4 1 5 5 5 6 1 3 5 7 1 1 2 1 3 1 2 1 3 1 2 3 4 1 5 6 8 8 8 1 1 2 3 3 4 4 5 5 5 5 6 6 8 8 8 8 1 2 3 3 4 4 5 5 8 8 8	$ \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{8} $ $ \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{8} $

ACCENT, MODIFYING MARKS AND THIN ALTERNATES

I II / / C I

CASE-SPECIFIC FORMS AND THIN ALTERNATES

LINING FIGURES AND THIN ALTERNTES

00123456789

1

OLDSTYLE FORMS AND THIN ALTERNATES

.,. / 0 2 7 0

"'.,::./\$£¥€

TABULAR FORMS AND THIN ALTERNATES

CASE-SPECIFIC FORMS AND THIN ALTERNATES

\$¢£¥€₦₱₺₽₹₿₩₫

CURRENCY AND THIN ALTERNATES

матн

ORNAMENTS

LEGAL, REFERENCE AND THIN ALTERNATES

PUNCTUATION, SYMBOLS AND THIN ALTERNATES

\$c£¥€H₱₺₽₹₿₩₫

«**A**»<>[][][][]/|\----

"',|\$£¥€

C

STANDARD CHARACTER SET

UPPERCASE LETTERS	ABCDEFGGHIJKLMNOPQRSTUVWXYZ ÁÀÂÂÂÂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂŢ ĐÉÈÊĘÊÊÊÊĔĔĔĒËĖĖĘĘĜĞĞĠĠĠĜĞĞĞĞĢĤŀŀŀŀ ĤĬĬĬĨĨĨĬĬIJĴĶĶĶĹĽĻĻĿŢĻŁŃ'nŅŃŇŇŇŅŅŅŊŎŐ ÒÔÔŐŐŐŎŎĨŎŎŎŎŌŎĊŎQŎŒŎŐŎŎŎŎŔŘŔŖŖŖ ŜŠŞŞŞBŤŢŢŢŢŢŢŰŰÙÛŬŬŨŪÜÜÜŮŮŲŲƯƯŬ ŨŮŲŲŃŴŴŴXÝŶŶŶŸŸŸŶŶŹŹŽŻZZĐÞƏ
LIGATURES	abcdefghijklmnopqrstuvwxyz áàâậáẩẩãăăăăăăăããāäàåảạąæbćĉčċçďddddéèêệế ềểễěĕẽēëėẻẹęĝğğgggĥĥhhhhiíìîĭĭĩĩỉiįjĵjkkklí/Jllĺlł mmmnnnnnnnnnnnnnoóóòôôôôôôôôôôôôôôôooooooœơơờỡ ởợŕřŕŗŗŗrśŝšșșşßťţţţţţtúûûûŭŭũūüúůůūůůůuuuuứừ ữửựyŵŵŵÿýŷŷÿÿýyyźźźżżzzðþə fffiflffifl
SMALL CAPITALS	ABCDEFGGHIJKLMNOPQRSTUVWXYZ ÁÀÂÂÂÂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂ ÊÊÊÊÊÊĔĔĒĒËĖĖĘĘĜĞĞĠĠĢĜĞĞĠĢĤIJIJĦĬĬĬĨĬĨĬ İ!JĴĶĶĶĹĽĻĻĿĻĿŃŃŅŇŇŇŇŅŅŊŊÓŐÒÔÔÔÔÔ ŎŎÕŌÖĊĊĢØŒơớờỡởĢŔŘŔŖŖŖŚŜŠŞŞŞBŤŢŢŢŢ ŢŦÚŰÙÛŬŬŨŪÜÜÜÜŮŮŲŲƯỨѶỮỬỰŴŴŴŴXÝŶŶ ŶŸŸŶŶYŹŹŻŻŢŢĐÞƏ
ACCENT & MODIFYING MARKS	//////////////////////////////////////

CASE-SPECIFIC FORMS

LINING FIGURES	0123456789
TABULAR FORMS	0123456789
OLDSTYLE FIGURES	0123456789
SUPERSCRIPT & SUBSCRIPT	A ⁰¹²³⁴⁵⁶⁷⁸⁹ B ₀₁₂₃₄₅₆₇₈₉ C
NUMERATORS & DENOMINATORS	0123456789/0123456789
PRECOMPOSED FRACTIONS	1/2 1/3 2/3 1/4 3/4 1/5 2/5 3/5 4/5 1/6 5/6 1/8 3/8 5/8 7/8
PUNCTUATION & SYMBOLS	.,::;?!¿i"″"′′,«»‹>"'()[]{}/ \·•:_&&@°%ª°#
PUNCTUATION & SYMBOLS	.,::;?!¿i"""'′,«»<>"'()[]{}/ \··:_&&@°%°°♯ © ℙ ^{® SM TM} *†‡§¶
PUNCTUATION & SYMBOLS LEGAL & REFERENCE MATH	.,::;?!¿i"""",«»<>"'()[]{}/ \··:_&&@°%°°♯ © @® ^{smtm} *†‡§¶ +-x÷=≠≈~±<>≤≥^µ
PUNCTUATION & SYMBOLS LEGAL & REFERENCE MATH CURRENCY	.,::;?!¿i"""",«»<>"'()[]{}/ \··:_&&@°%°°♯ © @® ^{smtm} *†‡§¶ +-×÷=≠≈~±<>≤≥^µ \$¢£¥€₦₽₺₽₹₿₩₫
PUNCTUATION & SYMBOLS LEGAL & REFERENCE MATH CURRENCY CASE-SPECIFIC FORMS	.,::;?!¿i"""",«»<>"'()[]{}/ \···:_&&@°% ^{ao} # © @ ^{® sm tm} *+‡§¶ +-×÷=≠≈~±<>≤≥^µ \$¢£¥€₦₽₺₽₹₿₩₫ «A»<>()[]{}/ \·· A&A

HEADLINE OPENTYPE FEATURES

LIGATURES

fluffiest fluffiest

STYLISTIC SETS

Źdźbło [Grass] Źdźbło [Grass]

1 - THIN PUNCTUATION AND ACCENTS

2 — ALTERNATE AMPERSAND

Salt&Pepper Salt&Pepper

3 — ALTERNATE PERCENT SIGN

0.19238 0.1923%

A{CAT/DOG} A{CAT/DOG}

10 - UPPERCASE PUNCTUATION (ALSO VIA "ALL CAPS")

11 – RAISED COLON (WITH LINING FIGURES)

5:30 PM:GO! 5:30 PM:GO!

12 — RAISED COLON (GLOBAL)

5:30 PM:GO! 5:30 PM:GO!

OLDSTYLE FIGURES

for 306 years for 306 years

SLASHED ZERO

for 306 years for 306 years

61/3 inches 6 1 inches

DIAGONAL FRACTIONS

6 15/32 inches 6¹⁵/₃₂ inches

SUPERIOR/SUPERSCRIPT FIGURES

Lincoln8 and Lincoln[®] and

INFERIOR/SUBSCRIPT FIGURES

C2H5OH C2H5OH

LOCALIZATIONS

CATALAN - PERIOD CENTERED TO PUNT VOLAT

constel·lació constel·lació

TURKISH & AZERBAIJANI — PRESERVING DOTLESS AND DOTTED I

Kırklareli KIRKLARELİ

MARK POSITIONING

Na'ashoʻii Na'ashoʻii

STANDARD OPENTYPE FEATURES

LIGATURES

fluffiest fluffiest

STYLISTIC SETS

1 – ALTERNATE & AND AMPERSAND GREGORIAN GREGORIAN SALT & PEPPER SALT & PEPPER

10 – UPPERCASE PUNCTUATION (ALSO VIA "ALL CAPS") A {CAT/DOG} A {CAT/DOG}

11 – RAISED COLON (WITH LINING FIGURES) 5:30 PM: GO! 5:30 PM: GO!

12 - RAISED COLON (GLOBAL) 5:30 PM: GO! 5:30 PM: GO!

SMALL CAPITALS

Brooklyn BROOKLYN

ALL SMALL CAPITALS

a NASA pilot a NASA pilot

OLDSTYLE FIGURES

for 306 years for 306 years

TABULAR FIGURES

\$206,230.59	\$206,230.59
£171,510.21	£171,510.21
¥850,046.03	¥850,046.03

FRACTIONS

615/32 inches 615/32 inches

SUPERIOR/SUPERSCRIPT FIGURES

Lincoln8 and Lincoln⁸ and

INFERIOR/SUBSCRIPT FIGURES

C2H5OH C₂H₅OH

LOCALIZATIONS

catalan – period centered to punt volat constel·lació constel·lació

turkish & azerbaijani – preserving dotless and dotted i Kirklareli KIRKLARELİ

mark positioning Na'asho໌´ii Na'ashó'ii